Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 165: 198-206, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30553110

RESUMO

Stable isotope labeled (SIL) compounds have been commonly used as internal standards (IS) to ensure the accuracy and quality of liquid chromatography-mass spectrometry (LC-MS) bioanalytical assays. Recently, the application of SIL drugs and LC-MS assays to microdose absolute bioavailability (BA) studies has gained increasing attention. This approach can provide significant cost and time saving, and higher data quality compared to the accelerator mass spectrometry (AMS)-based method, since it avoids the use of radioactive drug, high-cost AMS instrumentation and complex measurement processes. It also eliminates potential metabolite interference with AMS-based assay. However, one major challenge in the application of this approach is the potential interference between the unlabeled drug, the microdose SIL drug, and the SIL-IS during LC-MS analysis. Here we report a convenient and cost-effective strategy to overcome the interference by monitoring the isotopic ion (instead of the commonly used monoisotopic ion) of the interfered compound in MS analysis. For the BMS-986205 absolute BA case study presented, significant interference was observed from the microdose IV drug [13C7,15N]-BMS-986205 to its SIL-IS, [13C7,15N, D3]-BMS-986205, since the difference of nominal molecular mass between the two compounds is only 3 mu, and there is a Cl atom in the molecules. By applying this strategy (monitoring the 37Cl ion for the analysis of the IS), a 90-fold reduction of interference was achieved, which allowed the use of a synthetically accessible SIL compound and enabled the fast progress of the absolute BA study. This strategy minimizes the number of stable isotope labels used for avoiding interference, which greatly reduces the difficulty in synthesizing the SIL compounds and generates significant time and cost savings. In addition, this strategy can also be used to reduce the MS response of the analyte, therefore, avoiding the detector saturation issue of LC-MS/MS assay for high concentration BMS-986205. A LC-MS/MS assay utilizing this strategy was successfully developed for the simultaneous analysis of BMS-986205 and [13C7, 15N]-BMS-986205 in dog plasma using [13C7,15N, D3]-BMS-986205 as the IS. The assay was successfully applied to a microdose absolute BA study of BMS-986205 in dogs. The assay was also validated in human plasma and used to support a human absolute BA study. The same strategy can also be applied to other compounds, including those not containing Cl or other elements with abundant isotopes, or other applications (e.g. selection of internal standard), and the applications were presented.


Assuntos
Acetamidas/análise , Cromatografia Líquida/métodos , Inibidores Enzimáticos/análise , Quinolinas/análise , Espectrometria de Massas em Tandem/métodos , Acetamidas/administração & dosagem , Acetamidas/farmacocinética , Animais , Disponibilidade Biológica , Cromatografia Líquida/economia , Análise Custo-Benefício , Cães , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Humanos , Marcação por Isótopo , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Espectrometria de Massas em Tandem/economia
2.
Anal Chim Acta ; 916: 42-51, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016437

RESUMO

To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissulfetos/química , Polietilenoglicóis/análise , Proteínas/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Animais , Calibragem , Haplorrinos , Controle de Qualidade
3.
J Labelled Comp Radiopharm ; 57(9): 579-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25089024

RESUMO

The synthesis of a 16-residue, stable isotopically labeled peptide is described for use as a LC-MS/MS (Liquid chromatography-mass spectrometry/mass spectrometry) internal standard in bioanalytical studies. This peptide serves as a single universal surrogate peptide capable of quantifying a wide variety of immunoglobulin G and Fc-fusion protein drug candidates in animal species used in pre-clinical drug development studies. An efficient synthesis approach for this peptide was developed using microwave-assisted solid phase peptide synthesis (SPPS) techniques, which included the use of a pseudoproline dipeptide derivative. The corresponding conventional room temperature SPPS was unsuccessful and gave only mixtures of truncated products. Stable-labeled leucine was incorporated as a single residue via manual coupling of commercially available Fmoc-[(13) C6 , (15) N]-l-leucine onto an 11-unit segment followed by automated microwave-assisted elaboration of the final four residues. Using this approach, the desired labeled peptide was prepared in high purity and in sufficient quantities for long-term supplies as a bioanalytical internal standard. The results strongly demonstrate the importance of utilizing both microwave-assisted peptide synthesis and pseudoproline dipeptide techniques to allow the preparation of labeled peptides with highly lipophilic and sterically hindered side-chains.


Assuntos
Cromatografia Líquida/normas , Espectrometria de Massas/normas , Fragmentos de Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Radioisótopos de Carbono/química , Cromatografia Líquida/métodos , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Micro-Ondas , Dados de Sequência Molecular , Isótopos de Nitrogênio/química , Padrões de Referência
4.
Anal Chem ; 86(5): 2673-80, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24506335

RESUMO

Immunogenicity testing for antidrug antibodies (ADA) faces challenges when high levels of the drug are present in clinical patient samples. In addition, most functional cell-based assays designed to characterize the neutralizing ability of ADA are vulnerable to interference from endogenous serum components. Bead extraction and acid dissociation (BEAD) has been successfully applied to extract ADA from serum samples prior to conduction of cell-based assays. However, in the BEAD, certain amounts of the drug and endogenous serum components (so-called residual drug and serum components) from serum samples are carried over to final BEAD eluates due to formation of protein complexes with ADA or nonspecific binding with the beads. Using current enzyme-linked immunosorbent assay (ELISA)-based ligand-binding assays, it is difficult to evaluate the residual drug, which is complexed with excessive amounts of ADA and endogenous serum components in the BEAD eluates. Here, we describe an innovative application of LC-MS/MS for simultaneous detection of the residual human monoclonal antibody drug and endogenous human IgG and the neutralizing antibody positive-control (NAb-PC) in the BEAD eluates. In this study, the low levels of the residual drug and human IgG in the BEAD eluates indicate that the BEAD efficiently removed the high-concentration drug and serum components from the serum samples. Meanwhile, the NAb-PC recovery (∼42%) in the BEAD provided an acceptable detection limit for the cell-based assay. This novel application of LC-MS/MS to immunogenicity assay development demonstrates the advantages of LC-MS/MS in selectivity and multiplexing, which provides direct and fast measurements of multiple components for immunogenicity assay development.


Assuntos
Anticorpos Neutralizantes/análise , Imunoglobulina G/análise , Preparações Farmacêuticas/análise , Calibragem , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Humanos , Padrões de Referência , Espectrometria de Massas em Tandem
5.
Anal Chem ; 85(20): 9859-67, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24024648

RESUMO

An LC-MS/MS assay was developed and fully validated for the simultaneous quantitation of two coadministered human monoclonal antibodies (mAbs), mAb-A and mAb-B of IgG4 subclass, in monkey serum. The total serum proteins were digested with trypsin at 50 °C for 30 min after methanol denaturation and precipitation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated with a C18 column (2.1 × 100 mm, 1.7 µm) with mobile phases of 0.1% formic acid in water and acetonitrile. Four peptides, a unique peptide for each mAb and two confirmatory peptides from different antibody domains, were simultaneously quantified by LC-MS/MS in the multiple reaction-monitoring mode. Stable isotopically labeled peptides with flanking amino acids on C- and N-terminals were used as internal standards to minimize the variability during sample processing and detection. The LC-MS/MS assay showed lower limit of quantitation (LLOQ) at 5 µg/mL for mAb-A and 25 µg/mL for mAb-B. The intra- and interassay precision (%CV) was within 10.0% and 8.1%, respectively, and the accuracy (%Dev) was within ±5.4% for all the peptides. Other validation parameters, including sensitivity, selectivity, dilution linearity, processing recovery and matrix effect, autosampler carryover, run size, stability, and data reproducibility, were all evaluated. The confirmatory peptides played a critical role in confirming quantitation accuracy and the integrity of the drugs in the study samples. The robustness of the LC-MS/MS assay and the data agreement with the ligand binding data demonstrated that LC-MS/MS is a reliable and complementary approach for the quantitation of coadministered antibody drugs.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Análise Química do Sangue/métodos , Macaca fascicularis/sangue , Espectrometria de Massas em Tandem , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Precipitação Química , Cromatografia Líquida , Estudos de Viabilidade , Humanos , Desnaturação Proteica , Fatores de Tempo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...